Doctor Jonathan Cartu Announced - Robotic Catheterization for Mitral Valve Repair: Interview... - Jonathan Cartu Computer Repair Consultant Services
post-template-default,single,single-post,postid-4319,single-format-standard,qode-quick-links-1.0,ajax_fade,page_not_loaded,,qode_grid_1300,footer_responsive_adv,qode-theme-ver-11.2,qode-theme-bridge,wpb-js-composer js-comp-ver-5.2.1,vc_responsive

Doctor Jonathan Cartu Announced – Robotic Catheterization for Mitral Valve Repair: Interview…

Robotic Catheterization for Mitral Valve Repair: Interview...

Doctor Jonathan Cartu Announced – Robotic Catheterization for Mitral Valve Repair: Interview…

At present, mitral heart valve failure is treated through invasive surgery or via a transcatheter procedure called Transcatheter Edge-to-Edge Repair (TEER). However, this procedure is difficult to perform, potentially resulting in suboptimal outcomes in challenging cases and if done by inexperienced clinicians.

To address this, Moray Medical, a company based in Mountain View, California, has developed a robotic catheter and associated technology, including augmented reality and a 3D digital interface, designed to make the job easier. In fact, the company claims that using its technology to deliver cardiac therapies can be as simple as moving a cursor on a computer screen.

The company hopes that its offerings will enable effective mitral heart valve repair outside of specialized centers of excellence, thereby expanding the number of patients who can avail of the treatment. Moray Medical was recently shortlisted for the MedTech Innovator, 2020 Grand Prize for its device.

Medgadget had the opportunity to talk to Mark Barrish, Co-Founder and CEO of Moray Medical about their technology, but first here’s a quick preview of how it works:

Conn Hastings, Medgadget: Please give us an overview of mitral heart valve failure. What is it, and who does it affect?

Mark Barrish, Moray Medical: The mitral valve is a high-pressure one-way valve between two of the chambers of the heart that allows blood from the lungs to be pumped in one direction and prevents reverse flow. Mitral valve failure (also called mitral incompetence or mitral regurgitation (MR)) is a failure of the mitral valve to close tightly when it should. When the heart squeezes to pump blood to the other muscles and organs, this failure results in blood flowing back toward the lungs. While many patients with mild MR remain asymptomatic for years, those with significant mitral regurgitation typically feel tired and out of breath, and the condition often progresses until it becomes debilitating and for far too many, fatal.

Two million people develop moderate to severe mitral regurgitation (MR class 3+) in the US each year. MR can occur at any age and acute MR can strike suddenly, but most patients develop symptomatic MR from other cardiovascular issues as they age. For example, if the heart chambers expand over time the valve leaflets—the tissue structures which engage against each other every heartbeat to prevent blood flowing backward—can gradually separate. In other patients the disease originates within the tissues of the valve itself, either due to infection or failure of individual valve components. 

Medgadget: How is the condition typically treated? What are the challenges inherent in treating it?

Mark Barrish: Surgery treats only a small portion (less than about 2%) of MR patients. For example, if a young and otherwise healthy patient with acute MR is identified early, they may undergo open-heart surgery or robotically assisted laparoscopic surgery. For these surgeries the heart is stopped, the chamber is accessed through the heart wall, and the patient is supported by a heart-lung machine. The surgeon can then adjust valve tissues, attach support structures, or affix a replacement valve to the surrounding tissues of the heart. Surgical outcomes are highly skill dependent, and many MR patients are simply too frail to withstand the trauma these procedures impose on the heart and surrounding tissues.

Over the last decade a much less invasive option has become available. Rather than perforating the heart wall, a Transcatheter Edge-to-Edge Repair (TEER) implant or “clip” at the end of a flexible catheter shaft can be advanced through the vascular system into the heart. Using a series of mechanical actuators while viewing ultrasound and fluoroscopy images, the interventional cardiologist manipulates the clip within the heart to grasp the leaflets of the mitral valve adjacent the leak, permanently clipping a portion of the valve closed to prevent the backward flow of blood. TEER therapy is challenging to learn and perform, but a well-known 2018 COAPT study and data from almost 15,000 patents have shown that TEER provides advantages in morbidity, mortality, and quality of life, particularly when performed by experienced specialists (those who have performed more than 200 procedures and who are working at a large-volume TEER “center of excellence”).

In 2019, seven years after FDA approval, TEER therapy finally helped more MR patients than surgery. Unfortunately, most of those procedures were performed at small-volume centers by less experienced doctors. Because of the non-intuitive nature of the mechanical clip delivery system, the difficulty of interpreting the remote imaging, and the nuances of clipping differing valve anatomies, these small-center doctors simply do not achieve the same benefits for their patients as the centers of excellence. 

Medgadget: Please give us an overview of the Moray Medical Robotic Catheter and associated technology, and how it can be used to treat mitral heart valve failure.

Mark Barrish: Moray Medical’s products will digitize the interface between the interventional cardiologist and their therapeutic tools, making it as easy to manipulate a clip inside the beating heart as it is to move a cursor across a computer screen. The Moray Clipper™ TEER implant is supported by a single-use catheter and advanced to the heart using standard interventional techniques. Once the Clipper™ implant enters the chamber bordering the mitral valve, the cardiologist mounts the catheter handle to a re-usable Moray Coral™ fluidic driver that is about the size and shape of a brick. The operator will then use Moray’s Submersion™ digital interactive environment—in which real-time off-the-shelf imaging is integrated into a 3D robotic workspace—to move the implant through the heart chamber to the valve leaflets. The user drives the implant by moving Moray’s Trident™ input device with one hand relative to the tissues shown in the Submersion™ display.

In response, the Coral™ driver changes the position and orientation of the implant with corresponding movements, facilitating alignment of the implant with the displayed tissues. Throughout this process the real-time tissue images are augmented with easily understood…

Jonathan Cartu

No Comments

Post A Comment